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The Modern Observatory 

²  Integrated and distributed architecture (end to end data flow) 
² Archive and virtual observatory integration. 
² Feedback systems and distributed control loops. 
² Big projects and small projects: what are the differences? 



Example: ALMA Software and Physical Architecture 



Example: ALMA Data Flow 



Distributed System 

Requirement: the observatory is a distributed system.  

 

Servers and clients are distributed on different machines: 

² Possibly in different locations 

² With different purpose and functionality 

² With different requirements on performance and reliability 

This leads to a… 



Heterogeneous Distributed System 

Requirement: the observatory shall be a heterogeneous distributed 

system.  

 

Servers and clients may use different: 

² Hardware 

² System software 

² Programming languages 



Transparent Heterogeneous Distribution 

² Developers of clients should be unaware of the underlying server 

architecture & vice-versa 

²  It should be possible to change the architecture of a server 

transparently to the client 

² Client developers should not even need to know whether a server 

is local or remote. 



Functional and Technical Architecture 

The separation of functional from technical concerns is a strategy 

for enabling the application developer to concentrate on the 

specific aspects of the observatory 

 

² Expressing the complexity in software of an observatory is difficult 

² Having to know the subfields of computer science associated 

with distributed object architecture is also very challenging 

 

Conclusion 

 Let system developers take care of the computer science-related 

tasks 



Functional Architecture 

A Functional Software Architecture (FSA) is a model that identifies 

enterprise functions, interactions and corresponding information 

technology needs.  

 

² Software components/subsystems 

² Responsibilities 

²  Interfaces 

² Primary relationships and interactions 

² Physics and algorithms 

² Hardware deployment and distribution 

 

It is developed by architect and subsystem leaders 



Technical Architecture 

The functional architecture must be supported by a technical 

architecture that describes (and implements) the technical aspects 

of the software 

 

² Access remote resources 

² Store and retrieve data (Database technology) 

² Manage security needs 

² Communication mechanisms and networking 

² Software deployment and activation 

² Programming model 

 

It is provided by the technical team 



Separation of concerns 

² Functional and technical architecture: two views 

² Subsystem teams should concentrate on function 

² Technical architecture provides them with simple and standard 

ways to, for example: 

² Access remote resources 

² Store and retrieve data 

² Manage security needs 

² Keep the two concerns separate! 



Infrastructure Framework 

The key to the separation between Functional and Technical 

Architecture 

Purpose of a framework is to: 

² provide a programming model 

² Ensure that the same thing is done in the same way in all the 

development locations 

² provide common paradigm abstractions 

² mask heterogeneity 

²  satisfy performance, reliability and security requirements 



The ALMA Common Software (ACS) Framework 

² ACS provides the basic services needed for object oriented 

distributed computing. Among these: 

² Transparent remote object invocation 

² Object deployment and location based on a container/

component model 

² Distributed error and alarm handling 

² Distributed logging 

² Distributed events 

² The ACS framework is based on CORBA and built on top of free 

CORBA implementations.  

² Model driven development with code generation 



Supported Platforms 

² Operating system: RHEL 5.5 and 6.5 (32 and 64 bits) 

² CentOS/SL 5 and 6 binary compatible 

² Other linux versions supported by external projects 

² Windows added also by external initiatives 

² Real-time: RTAI 

² VxWorks supported by and for APEX 

² Languages: C++, Java, Python 

² CORBA middleware: TAO (C++), JacORB (Java), Omniorb 

(Python), CORBA services. 

² Embedded ACS Container: PC104, Debian, 300Mhz Geode, 

256MB RAM, 256 MB flash (CosyLAB microIOC), … 



LGPL and open source software 

The strategy to provide common features to users is: 
²  Use as much as possible open-source tools, instead of implementing 

things.  
²  Do not reinvent the wheel 

²  Reuse experience of other projects 

²  Do not pay for licenses 

²  Support from user community 

²  Identify the best way to perform a task among the  possibilities 

² Wrap with convenience and unifying APIs 

ACS is distributed under the LGPL license 

Open source software may have drawbacks: 
²  Fast lifecycle and support only of the newest 

²  Free/commercial support 

² Documentation not as good as commercial products 



Separation of roles 

ACS keeps separate 3 roles/phases: 

² Development by software developers 

² Deployment by deployment engineers 

² Runtime by system operators 



Development 

² Developers write components and graphical user interfaces 

clients in C++, Java, or Python. 

² ACS provides an integrated build environment based on 

application code modules.  

² Communication from an application to a component, and 

among components, uses ACS as middleware. 

² No thinking about starting and stopping components, or on which 

machine they should run later. 



Development 



Deployment 

² One or more containers get assigned to each computer. 

² Components get assigned to containers. 

² This location information is stored centrally in the Configuration 

Database (CDB). 

² Other configuration data for containers and components are also 

stored in the CDB. 

² There can be different deployments for unit tests, system tests, 

and various stages of the production system. 



Deployment 



Deployment 



Deployment 



Runtime 

² ACS containers start and stop components (lifecycle 

management) as needed. 

² Containers provide components and clients with references to 

other components. 

² The Manager is the central intelligence point that keeps the 

system together. Components never see it directly. 

² Manager, CDB, and other services, are started with the “acsStart” 

command or with the ACS command center GUI. 



Runtime 



Interfaces versus Implementations 

² First step: Identify objects 

² Mount 

² Camera 

² Telescope 

² Observation 

² Exposure 

² Second step:  Define interfaces 

²  Implementation comes later and is independent of interface  

² Deployment is also independent of interface definitions 

²  Interfaces shall be kept as stable as possible, but it must be 

possible to have them evolve when needed.  

² A formal interface definition language is needed 



One Interface, many implementations 



Interface Definition Language (IDL) 

² CORBA and DDS both use the same formal interface definition 

language: IDL 

IDL forms a ‘contract’ between client and servant or publisher and 

subscriber 

²  IDL reconciles diverse object models and programming 

languages 

²  Imposes the same object model on all supported languages 

² Programming language independent means of describing data 

types and object interfaces 
²  purely descriptive - no procedural components 

²  provides abstraction from implementation 

²  allows multiple language bindings to be defined 

² A way to integrate and share objects from different object 

models and languages 



Development Process 



Questions? 
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